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Abstract

In this work , we attempt to learn robot trajectories that can be gen-
eralised to unknown environments.We use vision based methods to learn
an effective path from source configuration to destination using roadmap
based approach.We capture images of random robot configuration(Y) with
corresponding joint parameters(θ).Both data are seperately processed and
are coupled to learn an effective map Y → θ using Gaussian Process Regres-
sion.Dimensionality Reduction Techniques including Random Projections and
Gaussian Process Latent Variable Model are implemented to form a lower di-
mensional embedding of image feature space to improve the mapping.Statistical
evaluation of generated joint parameters against ground truth data for path
generation match favourably.
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Chapter 1

Problem Definition

As a central element of robotics, motion planning has important applications
in areas such as navigation,protein folding, animation,virtual prototyping,search-
and-rescue,etc.The objective of the motion planning problem is to find a valid
(e.g., collision-free) path that takes a movable object (e.g., a robot) from an
initial configuration to a goal configuration. We define configuration as an
assignment of values to all of an objects degrees of freedom, which are es-
sentially the various ways (e.g., by translation in the X direction or rotation
about a joint) that the object can move.This approximation generally takes
the form of a visual roadmap of the environment, with nodes representing
feasible configurations and edges representing the transitions between them.
Finding a path from an initial node to a goal node on this roadmap corre-
sponds to finding a feasible path for the robot itself in its environment.

However , in most motion planning approaches, the configuration space is
assumed to be known, implying a complete knowledge of both robot kinemat-
ics and obstacles. Uncertainty of these characteristics, however, is prevalent
which makes such motion planning techniques inadequate for practical pur-
poses.However, a sensing mechanism, for example, which uses video cameras
and computer vision techniques, can help in overcoming uncertainties for
guiding the motion of a robot.Vision and Image Processing techniques can
be used to extract a set of relevant image parameters that are adequate to
explain the relation between images and the corresponding joint angles of the
robot.A set of images with the joint angles of the robot are taken in random
positions in the given configuration space of the robot.The datasets gener-
ated are manipulated using techniques to automate the motion of a robot
and planning of path from source to destination position.

The map y → θ ,i.e mapping from image space(y) to the joint angle
space (θ) can be coupled with the proximity graph based on the neighbour-
hood points in the configuration space to generate a visual roadmap.Once
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we obtain the map, θ = f (y) , then given a new image y* , we can esti-
mate the corresponding joint angle (θ) that can induce robot motion along
the generated trajectory or roadmap.However, the input image feature space
is high dimensional which adds to time as well as space complexity for any
supervised learning algorithm.Thus,image space has to preprocessed to learn
a lower dimensional representation that can be used for effective regression.

Thus the task of robot motion planning using vision based algorithms
can be reduced to systematic preprocessing of the input image feature space
followed by regression on the reduced space to learn a mapping between the
image feature space (y) and the joint angle space (θ).This mapping can be
used to generate a roadmap in the configuration space.
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Chapter 2

Introduction

2.1 Background

2.1.1 Dimensionality Reduction

Most computer vision problems suffer from one major constraint that the
number of degrees of freedom of the representation of input data is much
larger than its intrinsic representation. For eg,representation of a image cap-
tured by a camera as a matrix of pixel values.Each pixel of image matrix
corresponds to a single light sensor which are allowed to vary independently
of the other sensors on the lens. However,for any natural image captured
by a camera ,the neighbouring pixels are strongly corelated.The corealtion
between different pixel values will actually manifest themselves on a lower
dimensional manifold.The intrinsic representation can be found as a map-
ping from the observed representation(Y) to its lower dimensional represen-
tation(X).This mapping is referred to as the generating mapping,

Y=f(X)

Dimensionality reduction serves the purpose of reducing the number of pa-
rameters needed by a specific representation.

Spectral dimensionality reduction

Spectral dimensionality reduction is based on the assumption that the gen-
erating mapping f between the actual representation(Y) and the intrinsic
representation(X) is invertible. Some of the approaches are stated below:

1)MultiDimensionalScaling(MDS):
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Given dissimilarity measure δij between i and j the aim is to find a ge-
ometrical configuration of points X=[x1, x2..., xN ] such that the Euclidean
distance dij = ‖xi − xj‖ approximates the dissimilarity δij . Classical MDS
is formulated as a minimization of the following energy,

argminX
∑
ij

(δij − dij)

.The soluion for X=[x1, x2..., xN ] that minimizes the error function can be
found by spectral decomposition of the dissimilarilty matrix.

2)Random Projections:

The method of random projections[13] is a powerful dimension reduc-
tion technique that uses random projection matrices to project the data into
lower dimensional spaces.The original data X ∈ <p is transformed to the
lower dimensional S ∈ <k, with k � p, via S = RX,where the columns of R
are realizations of independent and identically distributed (i.i.d.) zero-mean
normal variables, scaled to have unit length.Random Projections is computa-
tionally cheap and can be easily implemented.It has been shown empirically
that results with the random projection method are comparable with results
obtained with PCA, and take a fraction of the time PCA requires . To re-
duce the computational burden of the random projection method, at a slight
loss in accuracy, the random normal projection matrix R may be replaced by
thresholding its values to -1 and +1, or by matrices whose rows have a fixed
number of 1s (at random locations) and the rest 0s.

3)Isomap:

Isomap was presented as a non-linear modification of MDS[9].Isomap is
based on the proximity graph approach that represent a specific neighbor-
hood relationships in the data.The fundamental idea behind proximity graph
based algorithms for dimensionality reduction is that locally the data can be
assumed to lie on a linear manifold. This means that locally the distance in
the original representation of the data will be a good approximation to the
manifold distance. Therefore the neighborhood relationship used for proxim-
ity graphs in dimensionality reduction is the inter-distance between points in
the original representation. Usually the graphs are constructed either from
an N nearest neighbor algorithm where the N closest points are connected.
In Isomap it is suggested that the manifold distance be approximated by the
shortest path through the proximity graph. By computing the shortest path
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through the proximity graph a dissimilarity measure can be found between
each data point onto which MDS can be applied.
4)Locally Linear Embedding:
Local Linear Embeddings (LLE)[7] is also based on the preservation of a
proximity graph structure. LLE is based on the assumption that the mani-
fold can be locally approximated using small linear patches.By rotating and
translating each of these patches the full manifold structure can be modeled.
LLE is a two step algorithm, in the first step each point in the data set is
described by the nodes connected in the proximity graph as expansion,

W
′
= argminW

∑N
i

∥∥∥yi −∑j∈N(i)Wijyj

∥∥∥
where y lies image feature space and N(i) is the index set of points that

are connected to i in the proximity, subject to∑
jWij = 1

The optimal weights W can be solved in closed form from above equation.[7].Assuming
that the manifold is locally linear, the reconstruction weights should summa-
rize the local structure of the data and should therefore be equally valid in
reconstructing the manifold representation of the data X. To find this mani-
fold representation a second minimization is formulated,

X
′
= argmin

∑
i

∥∥∥xi −∑jWijxj

∥∥∥
where X

′
is the intrinsic representation of the data.

Generative dimensionality reduction

Generative approaches to dimensionality reductions aim to model the ob-
served data as a mapping from its intrinsic representation. The underlying
representation is often referred to as the latent representation of the data and
the models as latent variable models for dimensionality reduction[8][3].Description
of one such technique (Gaussian Process Latent Variable Model) is given un-
der Gaussian Process.

2.1.2 Gaussian Process

A D dimensional Gaussian distribution is defined by a D × 1 mean matrix
and a D × D covariance matrix.Gaussian processes (GPs) extend multivari-
ate Gaussian distributions to infinite dimensionality.It is chracterized by the
mean and covariance where the mean and covariance is defined not by fixed
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size matrices but by a mean µ(x) and a covariance k(x, x
′
) function, defined

over infinite index sets, x.Now, the n observations in an arbitrary data set,
Y = [y1, . . . , yn] can always be imagined as a single point sampled from some
multivariate ( n -variate) Gaussian distribution.Very often, its assumed that
the mean of this GP is zero everywhere.What relates one observation to an-
other in such cases is just the covariance function,k(x, x

′
).A popular choice

for the covariance function is the ”squared exponential” often referred to as
the Gaussian Kernel.

k(x, x
′
) = σ2exp

[
−(x− x′

)2

2l2

]
Gaussian Process Regression [1],[6]

In regression , we are interested in modelling a relationship between the input
domain X ∈ <D and target domain Y ∈ <k from a set of observations xi ∈ X
and yi ∈ Y where i=1,2....n.Assuming the given functional relationship and
that the observations have been corrupted by additive Gaussian noise , we
are interested in modelling

yi = f(xi) + ε

where ε ∈ N(0, σ2)
A GP can be used to specify a prior distribution over the functional relation-
ship,i.e, f ∼ GP (µ, k) with squared exponential covariance function

yi = f(xi) +N(0, σ2)

This is equivalent to the regression problem

yi = f(xi)

where

k(x, x
′
) = σ2

fexp

[
−(x− x′

)2

2l2

]
+ σ2

nδ(x, x
′
)

where δ(x, x
′
) is the Kronecker delta function.So,given set of n observations

,our aim is to predict y∗ for a new input value x∗.To prepare for Gaussian
process regression, we have to calculate covariance function for all possible
combinations of these points summarizing in three matrices,

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)


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K∗ = [k(x∗, x1)k(x∗, x2)..........k(x∗, xn)]

K∗∗ = k(x∗, x∗)

Since the key assumption in GP modelling is multivariate Gaussian dis-
tribution, we have that (

y
y∗

)
∼ N

[
0,

(
K KT

∗
K∗ K∗∗

)]
where T indicates matrix transposition.We are interested in the conditional
probability p(y∗|y):given the data how likely is the prediction of y∗?It can be
shown that

y∗|y ∼ N(K∗K
−1y,K∗∗ −K−1KT

∗ )

For the above distribution,our best estimate of y∗ is the mean of the above
distribution.

µ(y∗) = K∗K
−1y

and the uncertainity in the distribution is captured in its variance

var(y∗) = K∗∗ −K−1KT
∗

However the reliability of our regression is dependent on how well we select
the covariance function. Clearly if its parameters call them θ = (σf , σn, l)
are not chosen sensibly, may lead to poor results. Our maximum a posteriori
estimate of θ occurs when p(θ|x, y) is at its greatest.Bayes theorem tell us that
assuming we have little prior knowledge what θ should be this corresponds
to maximizing the likelihood p(y|x, θ),given by

log p(y|x, θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π

We can simply run some multivariate optimization algorithm,for eg SCG(Scalable
Conjugate Gradient) on this equation to find a reasonable estimate of the
covariance function parameters.
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Figure 2.1: Graphical rep. of GPLVM

Gaussian Process Latent Variable Model

The GPLVM is a probabilistic dimensionality reduction technique that uses
Gaussian Processes (GPs) to find a non-linear manifold of some data that
seeks to preserve the variance of the data in latent space[2],[3],[4]. The latent
space X ∈ <n×q is assumed to be related to the mean centered data set,
Y ∈ <n×p through a projection matrix W ∈ <p×q that is corrupted by
noise.This linear relation is non-linearised using the kernel trick.Moreover
the noise is assumed to possess a normal gaussian distribution.

yi = Wxi + εi

where
εi ∼ N(0, σ2I)

Using standard latent variable approach for generative dimensionality reduc-
tion , we can obtain the given distribution p(Y |X,W ) as

p(Y |X,W ) =
n∏
i=1

N(yi,:|Wxi,:, σ
2I)

To solve for unknown weight matrix , we assume some prior knowledge over
the weight parameters which serves as the trick for Gaussian Process Latent
Variable Model. We define Gaussian prior over parameters W with unit
variance and integrate them to obtain a marginal likelihood .

p(W ) =

p∏
i=1

N(wi,:|0, I)

Using the equations,

p(Y |X,W ) =
n∏
i=1

N(yi,:|Wxi,:, σ
2I)
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p(W ) =

p∏
i=1

N(wi,:|0, I)

and integrating out the parameters W, we obtain the marginal likelihood,

p(Y |X) =

p∏
j=1

N(y:,j|0, XXT + σ2I)

which is equivalent to

p(Y |X) =

p∏
j=1

N(y:,j|0, K)

K = XXT + σ2I

The covariance matrix here is actually a covariance function.The covariance
matrix K = XXT + σ2I is a product of Gausian processes with linear ker-
nels.We replace this linear kernel with a non linear kernel to obtain a non-
linear model(kernel trick).
This linear kernel can be replaced with squared exponential kernel which has
the form

k(xi,:, xj,:) = αexp(
‖xi,: − xj,:‖2

2l2
)

However we now possess X,θ = (α, l, σ2) as unknowns which can be obtained
by maximizing the mariginal likelihood function p(Y |X, θ) which is given as

log p(Y |X, θ) = −p
2

log |K| − 1

2
tr(K−1Y Y T ) + const.

For non-linear mappings, a closed-form solution is not available and the like-
lihood function is optimised with respect to the latent values X using conju-
gate gradient optimisation.Maximising the marginal likelihood with respect
to the latent points and the hyperparameters θ results in the latent space
representation of the GPLVM.

(X
′
, θ

′
) = argmaxX,θP (Y |X, θ)

Shared Gaussian Process Latent Variable Model

Gaussian Process Latent Variable Model has been extended to construct a
shared latent space model between two observation spaces.The two sets of
variables, Y and Z possess shared latent space X,and may also possess private
independent space .The likelihood function is taken to the the product of each
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individual likelihood function, conditioned on a common latent space[10].This
leads to the optimisation of two different sets of hyperparameters for the two
kernel functions.The joint likelihood of two observation spaces is given by

P (Y, Z|X, θS) = P (Y |X, θY )P (Z|X, θZ)

where θS = (θY , θZ) is a concatenation of two sets of hyperparameters.

Figure 2.2: Graphical rep. of Shared GPLVM

The SGPLVM can be viewed as a non-linear extension of Canonical Cor-
relation Analysis (CCA). CCA learns a correspondence between two datasets
by maximising their joint correlation. The Shared GPLVM (SGPLVM) has
been used to learn a mapping between pose and silhouette data by Ek et
al[10].In this technique , NCCA(Non Consolidating Component Analysis)
has been used to initialise the private spaces while CCA(Canonical Corela-
tion Analysis) has been used for initialisation of shared spaces.
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2.2 Motivation

Mapping between the image space (Y ) and joint parameters space(θ) is
generally non linear.Most of the regression techniques do piece wise linear
approximations and are therefore not able to capture non linearity in the
data.Gaussian Process Regression is characterized by a non linear squared
exponential covariance function that is capable for finding an effective map
between two feature spaces.

However,the input image feature space is high dimensional(640*480 di-
mensional) and any type of supervised learning motion planning algorithm
require a very high time and space complexity .It has been shown by Awasthi,
Mukerjee et.al [12] that ISOMAP, a nonlinear dimensionality reduction tech-
nique,if used to reduce the dimensionality of the images of a simulated planar
arm with 2 joints from 30000 to a 3-dimensional embedding, the perfor-
mance of a neural network in regressing the images with the angles improved
significantly. Moreover, since the images are smooth functions of the an-
gles,its intrinsic dimension is the same as the number of degrees of freedom
of motion.Thus,image feature space can be preprocessed to find a lower di-
mensional manifold which is capable of capturing maximum variance in the
data.Moreover,due to their cheap computation and distance preserving na-
ture, Random Projection can be used in conjunction with other Non Linear
Dimension Reduction techniques such as GPLVM, to speed up dimensional-
ity reduction process.

Gaussian Process Latent Variable Model has been used for dimensionality
reduction since it can be extended to model shared latent space between
two different feature spaces and learn a direct mapping between two feature
spaces.Ek et al suggested SGPLVM model that has been used to model a
relation between human pose and corresponding silhouettes.
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Chapter 3

Work Done and Results

3.1 Dataset Collection

We used two perpendicular cameras to collect videos of different robot config-
urations for 6 degrees of freedom CRS Robotic arm using only three degrees
of freedom.We restricted the joint angles to specific range due to certain
robot constraints.We collected 32 videos chracterized by 135 different config-
urations given as input to the robot.In order to form a labelled dataset , we
exploited the time lag that existed between two moving frames.We extracted
4320 images corresponding to the joint angles.Each image was 640*480;ie
307200 dimensional.We used Vibe algorithm[11] to perform background sub-
traction and form silhouettes from these images.We rescaled these images to
220*165 which is around 36,300 dimensional to reduce image dimension. We

(a) Original Image (b) Vibe Processed Image

Figure 3.1: Background Subtracted Image

projected this 36300 dimensional image feature space to 7175 dimensions us-
ing random projections.We now had 7175 dimensional images feature space
corresponding to the images from two different cameras,say Y1 and Y2. We
concatenated them to form 14350 dimensional image feature space i.e

Y =

(
Y1
Y2

)
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where Y1 ∈ <7175, Y2 ∈ <7175,thus Y ∈ <14350.
We once again applied random projection on Y to reduce it to Y

′
where

Y
′ ∈ <7175.

As we varied only 3 degrees of freedom so our joint angle vector is 3
dimensional.Out of these 4320 collected datapoints, we used 3645 images for
training and remaining 675 images for validation with their corresponding
joint angles.

3.2 Regression

3.2.1 Approach1:SGPLVM Model

We implemented Shared Gaussian Process Latent Variable Model as sug-
gested by Ek et.al[10] as an extension of GPLVM .Shared GPLVM assumes
that the two feature spaces, namely the image space(Y ) and joint parame-
ter space(θ) possess a shared lower dimensional manifold.We used 7175 di-
mensional images and 3 dimensional joint angles as our input feature space
for testing the SGPLVM model.We used 15 top eigen vectors for images
and 3 eigen vectors for angles from PCA to represent the overall variance
present in the data.We further assumed two latent spaces being shared be-
tween the observation spaces and 1 independent latent space for both feature
spaces.However , we cannot obtain satisfactory results from this technique
and average value of absolute error was as high as 12 degrees per joint an-
gle.Thus we switched to the second approach for our regression problem.Refer
figure 3.2 and 3.3

Figure 3.2: Comparison:SGPLVM result with ground truth(100 test points)

13



Figure 3.3: Comparison:SGPLVM result with ground truth(675 test points)

3.2.2 Approach2:Gaussian Process Regression

The dimensionality of the input image feature space is still too high which
adds to the computational complexity of our regression problem and it can-
not be easily used to learn an effective mapping with the joint angles.Since
the intrinsic dimensionality of the image space will be a lot less than the
given reduced dimension, we implemented non linear dimensionality reduc-
tion techniques to project the image space to lower dimensional space.Ref
figure 3.4 and 3.5 for plot of image space and joint angle space

(a) (b)

Figure 3.4: plot for joint angles in joint angle space
(colors are derived from proximity on basis of K means clustering)

We used different techniques as Isomap, Locally Linear Embedding and
Gaussian Process Latent Variable Model(GPLVM) and compared their per-
formance.Since GPLVM requires initialisation using other spectral dimen-
sionality reduction method, we considered GPLVM initialised with LLE and
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(a) (b)

Figure 3.5: 3d embedding of image space using GPLVM(lle init.)
(colors are derived from proximity on basis of K means clustering)

initialised with Isomap seperately.The 7175 dimensional feature space was
reduced to as low as 30 dimensional which served as the input feature space
for Gaussian Process Regression.Refer figure 3.6,3.7,3.8

Figure 3.6: Comparison:Gplvm(lle init.) followed by GP Regression results
with ground truth(100 test points)

It was observed that GPLVM gave better results under GPRegression
where GPLVM initialised with LLE gave superior results than that initialised
with Isomap.Moreover on statistical analysis of the output,it was observed
that the results were close to ground truth.Refer figure 3.9
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Figure 3.7: Comparison:Gplvm(lle init.) followed by GP Regression results
with ground truth(675 test points)

Figure 3.8: Comparison:LLE followed by GP Regression results with ground
truth(675 test points)

3.3 Visual RoadMap

Constructing a roadmap and obtaining a valid path require us to create a
proximity graph of the input image space based on its neighbourhood. To
make a visual roadmap, we exploited two assumptions, firstly, since the im-
age initially was very high dimensional and computing Euclidean distances
between all possible pairs was expensive , we used 7175 dimensional image
vector for the purpose , secondly, if two images are close together then their
corresponding joint angles will also be close together.Under above stated
assumptions,we implemented K-means clustering on these 3645 points and
split them into 729 clusters , roughly 5 points in each cluster.All of these
3645 points in the configuration space are assumed to be connected where
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Figure 3.9: Comparative error analysis using different dimensionality reduc-
tion methods followed by GP Regression

Table 3.1: Comparison of error among various dimensionality reduction tech-
niques

Technique Avg. error Min error Max error Standard Deviation

LLE 0.853 0.030 6.507 0.66
GPLVM(lle init.) 0.558 0.013 3.247 0.38

Isomap 2.713 0.081 12.10 1.85
GPLVM(isomap init.) 0.968 0.084 5.378 0.66

edge weights were derived from distance between centroids of the clusters.We
represent each cluster by its centroid and find pairwise distance matrix be-
tween centroids of different clusters, let say DIST . Now for any given point
Zi(joint angle) we first find the cluster to which it belongs let say j and we
then sort the array DIST(j,:) in increasing order. Now suppose we want to
update the entry W(i,k) and if k point belongs to mth cluster then W(i,k) is
updated as the rank of the mth cluser in the sorted array DIST(j,:)

For any two unknown configurations say A,B we first project correspond-
ing images to 7175 dimensions using random projections followed by reduc-
tion to 30 dimensions using GPLVM. We then use GP regression to obtain
its corresponding joint angles.Nearest neighbour for A and B is found in the
above graph among 3645 points.Say A has closest neighbour A1 while B has
closest neighbour B1.Path between A1 and B1 is found by applying Dijak-
stra’s Algorithm on above distance matrix and shortest path is returned.
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Thus A − −A1 − − − −(shortest path from proximity graph)− − − −
−B1 −−B is reported as a path between the unknown configurations.Refer
figure 3.10,3.11,3.12,3.13,3.14,3.15

Figure 3.10: Direct Path between test points 1 and 100

Figure 3.11: Roadmap between test points 1 and 100
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Figure 3.12: Transition showing various configurations on road map (test
points 1,100)

Figure 3.13: Direct Path between test points 17 and 289
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(a) path between test points 17 and
289(2D view)

(b) path between test points 17 and
289(3D view)

Figure 3.14: Roadmap between test points 17 and 289

Figure 3.15: Transition showing various configurations on road map (test
points 17,289)
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Chapter 4

Conclusion and Future Work

We have shown how Gaussian process regression can be coupled with Gaus-
sian Process Latent Variable Model to find an effective inverse mapping be-
tween the image space and the joint angle space.Statistical analysis of the
results show that the obtained results are favourably close to the ground
truth.The path generated between two configuration spaces also passes through
a number of close observed configurations in the input configuration space.

In future work,we would like to update the lower dimensional manifold
structure and reconstruct the distance matrix and the proximity graph to
take into account any obstacles in the surrounding environment.Shared man-
ifold model with non linear initialization can be implemented to model the re-
lationship between the image space and the joint parameter space.Dynamical
models can be included whereby a continuous sequence of robot motion im-
ages can be utilised to improve upon the manifold structure.This can help to
solve multimodalities in the solution in case of multivalued regression.

Generating a labelled data (images and the corresponding joint angles)
is a tedious and time taking task.However,a lot of unlabelled data is readily
available from the videos.As proposed by Navratnam et al.[5] this unlabelled
data can be combined with labelled samples to improve upon the manifold
structure which can give better inferences even in case of sparse dataset.
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